3.44 \(\int (a+b \cos (c+d x))^2 \sqrt{e \sin (c+d x)} \, dx\)

Optimal. Leaf size=114 \[ \frac{2 \left (5 a^2+2 b^2\right ) E\left (\left .\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{e \sin (c+d x)}}{5 d \sqrt{\sin (c+d x)}}+\frac{14 a b (e \sin (c+d x))^{3/2}}{15 d e}+\frac{2 b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{5 d e} \]

[Out]

(2*(5*a^2 + 2*b^2)*EllipticE[(c - Pi/2 + d*x)/2, 2]*Sqrt[e*Sin[c + d*x]])/(5*d*Sqrt[Sin[c + d*x]]) + (14*a*b*(
e*Sin[c + d*x])^(3/2))/(15*d*e) + (2*b*(a + b*Cos[c + d*x])*(e*Sin[c + d*x])^(3/2))/(5*d*e)

________________________________________________________________________________________

Rubi [A]  time = 0.131006, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2692, 2669, 2640, 2639} \[ \frac{2 \left (5 a^2+2 b^2\right ) E\left (\left .\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{e \sin (c+d x)}}{5 d \sqrt{\sin (c+d x)}}+\frac{14 a b (e \sin (c+d x))^{3/2}}{15 d e}+\frac{2 b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{5 d e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^2*Sqrt[e*Sin[c + d*x]],x]

[Out]

(2*(5*a^2 + 2*b^2)*EllipticE[(c - Pi/2 + d*x)/2, 2]*Sqrt[e*Sin[c + d*x]])/(5*d*Sqrt[Sin[c + d*x]]) + (14*a*b*(
e*Sin[c + d*x])^(3/2))/(15*d*e) + (2*b*(a + b*Cos[c + d*x])*(e*Sin[c + d*x])^(3/2))/(5*d*e)

Rule 2692

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m + p)), x] + Dist[1/(m + p), Int[(g*Cos[e + f*x])^
p*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(m + p) + a*b*(2*m + p - 1)*Sin[e + f*x]), x], x] /; FreeQ[{
a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + p, 0] && (IntegersQ[2*m, 2*p] || IntegerQ[m
])

Rule 2669

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b*(g*Cos[
e + f*x])^(p + 1))/(f*g*(p + 1)), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x))^2 \sqrt{e \sin (c+d x)} \, dx &=\frac{2 b (a+b \cos (c+d x)) (e \sin (c+d x))^{3/2}}{5 d e}+\frac{2}{5} \int \left (\frac{5 a^2}{2}+b^2+\frac{7}{2} a b \cos (c+d x)\right ) \sqrt{e \sin (c+d x)} \, dx\\ &=\frac{14 a b (e \sin (c+d x))^{3/2}}{15 d e}+\frac{2 b (a+b \cos (c+d x)) (e \sin (c+d x))^{3/2}}{5 d e}+\frac{1}{5} \left (5 a^2+2 b^2\right ) \int \sqrt{e \sin (c+d x)} \, dx\\ &=\frac{14 a b (e \sin (c+d x))^{3/2}}{15 d e}+\frac{2 b (a+b \cos (c+d x)) (e \sin (c+d x))^{3/2}}{5 d e}+\frac{\left (\left (5 a^2+2 b^2\right ) \sqrt{e \sin (c+d x)}\right ) \int \sqrt{\sin (c+d x)} \, dx}{5 \sqrt{\sin (c+d x)}}\\ &=\frac{2 \left (5 a^2+2 b^2\right ) E\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{e \sin (c+d x)}}{5 d \sqrt{\sin (c+d x)}}+\frac{14 a b (e \sin (c+d x))^{3/2}}{15 d e}+\frac{2 b (a+b \cos (c+d x)) (e \sin (c+d x))^{3/2}}{5 d e}\\ \end{align*}

Mathematica [A]  time = 0.270983, size = 83, normalized size = 0.73 \[ \frac{2 \sqrt{e \sin (c+d x)} \left (b \sin ^{\frac{3}{2}}(c+d x) (10 a+3 b \cos (c+d x))-3 \left (5 a^2+2 b^2\right ) E\left (\left .\frac{1}{4} (-2 c-2 d x+\pi )\right |2\right )\right )}{15 d \sqrt{\sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^2*Sqrt[e*Sin[c + d*x]],x]

[Out]

(2*Sqrt[e*Sin[c + d*x]]*(-3*(5*a^2 + 2*b^2)*EllipticE[(-2*c + Pi - 2*d*x)/4, 2] + b*(10*a + 3*b*Cos[c + d*x])*
Sin[c + d*x]^(3/2)))/(15*d*Sqrt[Sin[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 1.878, size = 294, normalized size = 2.6 \begin{align*} -{\frac{e}{15\,d\cos \left ( dx+c \right ) } \left ( 30\,\sqrt{1-\sin \left ( dx+c \right ) }\sqrt{2+2\,\sin \left ( dx+c \right ) }\sqrt{\sin \left ( dx+c \right ) }{\it EllipticE} \left ( \sqrt{1-\sin \left ( dx+c \right ) },1/2\,\sqrt{2} \right ){a}^{2}+12\,\sqrt{1-\sin \left ( dx+c \right ) }\sqrt{2+2\,\sin \left ( dx+c \right ) }\sqrt{\sin \left ( dx+c \right ) }{\it EllipticE} \left ( \sqrt{1-\sin \left ( dx+c \right ) },1/2\,\sqrt{2} \right ){b}^{2}-15\,\sqrt{1-\sin \left ( dx+c \right ) }\sqrt{2+2\,\sin \left ( dx+c \right ) }\sqrt{\sin \left ( dx+c \right ) }{\it EllipticF} \left ( \sqrt{1-\sin \left ( dx+c \right ) },1/2\,\sqrt{2} \right ){a}^{2}-6\,\sqrt{1-\sin \left ( dx+c \right ) }\sqrt{2+2\,\sin \left ( dx+c \right ) }\sqrt{\sin \left ( dx+c \right ) }{\it EllipticF} \left ( \sqrt{1-\sin \left ( dx+c \right ) },1/2\,\sqrt{2} \right ){b}^{2}+6\,{b}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{4}+20\,ab \left ( \cos \left ( dx+c \right ) \right ) ^{3}-6\,{b}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{2}-20\,ab\cos \left ( dx+c \right ) \right ){\frac{1}{\sqrt{e\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2*(e*sin(d*x+c))^(1/2),x)

[Out]

-1/15/cos(d*x+c)/(e*sin(d*x+c))^(1/2)*e*(30*(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)*Ellip
ticE((1-sin(d*x+c))^(1/2),1/2*2^(1/2))*a^2+12*(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)*Ell
ipticE((1-sin(d*x+c))^(1/2),1/2*2^(1/2))*b^2-15*(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)*E
llipticF((1-sin(d*x+c))^(1/2),1/2*2^(1/2))*a^2-6*(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)*
EllipticF((1-sin(d*x+c))^(1/2),1/2*2^(1/2))*b^2+6*b^2*cos(d*x+c)^4+20*a*b*cos(d*x+c)^3-6*b^2*cos(d*x+c)^2-20*a
*b*cos(d*x+c))/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \sqrt{e \sin \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(e*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^2*sqrt(e*sin(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}\right )} \sqrt{e \sin \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(e*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)*sqrt(e*sin(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{e \sin{\left (c + d x \right )}} \left (a + b \cos{\left (c + d x \right )}\right )^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2*(e*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(e*sin(c + d*x))*(a + b*cos(c + d*x))**2, x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*(e*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out